Среда, 24.04.2024, 11:55Главная | Регистрация | Вход

Меню сайта

Форма входа

Поиск

На хостинг

Наш опрос

Что бы Вы хотели видеть на сайте?
Всего ответов: 989

Опечатки

Система Orphus

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0
Статьи
Главная » Статьи » Введение в микробиологию » Микроорганизмы и окружающая среда

Микроорганизмы на службе человека

Несведущий в микробиологии видит практическое значение микроорганизмов в первую очередь во вреде, который они причиняют человеку, животным и растениям. Этими болезнетворными (патогенными) ми кроорганизмами и их специфическими особенностями занимаются такие науки, как медицинская и ветеринарная микробиология, а также фитопатология. Хотя микроорганизмы и в других сферах природы, и в промышленности выступают иногда в роли вредителей, их роль как полезных организмов существенно преобладает. Они уже давно завоевали себе прочное место в домашнем хозяйстве, а в промышленности они совершенно необходимы. Их используют в самых различных отраслях от первичной переработки сельскохозяйственных продуктов до катализа сложнейших этапов химических синтезов.

Классические микробиологические производства. На примере пивоварения и виноделия с использованием дрожжей, выпечки хлеба и приготовления молочных продуктов с помощью молочнокислых бактерий, а также получения пищевого уксуса при участии уксуснокислых бактерий становится очевидным, что микроорганизмы относятся к старейшим культурным «растениям». В Японии и Индонезии соевые бобы издавна перерабатываются с помощью мицелиальных грибов, дрожжей и молочнокислых бактерий. Если не считать получения этанола, в промышленном производстве индивидуальных веществ микроорганизмы начали использовать лишь в последние шестьдесят лет. Уже в период первой мировой войны с помощью управляемого дрожжевого брожения получали глицерин. Молочная и лимонная кислоты, в больших количествах необходимые для пищевой промышленности, производятся с помощью молочнокислых бактерий и гриба Aspergillus niger соответственно. Из дешевых, богатых углеводами отходов путем брожения, осуществляемого клостридиями и бациллами, можно получать ацетон, бутанол, 2-пропанол, бутандиол и другие важные химические соединения.

Производство антибиотиков. С появлением антибиотиков наступила новая эпоха в медицине и фармацевтической промышленности. Благодаря открытию пенициллина и других продуктов метаболизма грибов, актиномицетов и иных микроорганизмов человечество приобрело высокоэффективное оружие для борьбы с бактериальными инфекциями. Успешно продолжаются поиски новых антибиотиков. Теоретически перспективным кажется и путь применения антибиотиков для борьбы с вирусными болезнями и с опухолями вирусного происхождения.

Новые микробные производства. Классические виды брожения дополняются новыми применениями микробов в химических производствах. Из грибов получают каротиноиды и стероиды. Когда выяснилось, что Corynebacterium glutamicum из сахара и соли аммония с большим выходом синтезирует глутаминовую кислоту, были получены мутанты и разработаны методы, с помощью которых можно в больших масштабах производить многие аминокислоты, нуклеотиды и реактивы для биохимических исследований. Микроорганизмы используются химиками в качестве катализаторов для осуществления некоторых этапов в длинной цепи реакций синтеза; микробиологические процессы по своей химической специфичности и по выходу продукта превосходят химические ре акции; ферменты, применяемые в промышленности, - амилазы для гидролиза крахмала, протеиназы для обработки кож, пектиназы для осветления фруктовых соков и другие - получают из культур микроорганизмов.

Монопольное положение микроорганизмов. Следует отметить, что не которые виды сырья, доступные в особенно больших количествах, такие как нефть, природный газ или целлюлоза, могут использоваться микроорганизмами и перерабатываться ими в клеточный материал (биомассу) или в промежуточные продукты, выделяемые клетками. Микроорганизмы, таким образом, незаменимы при «облагораживании» этих необычных видов сырья для биотехнологических процессов; освоение такого сырья биологическими технологиями только начато.

Современные достижения генной инженерии. Изучение механизмов передачи генов у бактерий и участия в этом процессе внехромосомных элементов открыло возможность включения чужеродной ДНК в бактериальные клетки. Генетические манипуляции позволяют вносить не большие отрезки носителей генетической информации высших организмов, например человека, в бактерию и заставлять ее синтезировать соответствующие белки. Вполне осуществимо производство гормонов, антигенов, антител и других белков с помощью бактерий. Делаются также попытки передать растениям способность к азотфиксации и лечить болезни, связанные с биохимическими дефектами.

Непосредственная применимость основополагающих научных знаний. Попытка перечислить в этом разделе все виды технологии и продукты промышленной микробиологии, а также иные, пока лишь предпола­гаемые, области ее применения завела бы нас слишком далеко. Связь между фундаментальными исследованиями и практикой в микробиологии, как и во всех естественных науках, очень тесна: «Нет прикладных наук... но каждая наука имеет много практических приложений» (Л. Пастер).

Признак, получивший отражение в самом названии «микроорганизмы» - это малая величина особи. Она не только послужила причиной отделения этих организмов от животных и растений: с нею существенно связаны также особенности морфологии микробов, активность и пластичность их метаболизма и распространение их в природе, а также удобство обращения с ними в лаборатории.

Размеры особи и соотношение между поверхностью и объемом. Диаметр большинства бактерий не превышает тысячной доли миллиметра. Эта величина - 1 микрометр (микрон), или 10-3 мм, - и стала «аршином» микробиолога. Данные о тонкой структуре клетки приводятся в нанометрах: 1 нм = 10 -3 мкм = 10 -6 мм. Размеры мелких цианобактерий, дрожжей и простейших находятся в пределах 10 мкм. У этих столь малых организмов соотношение между поверхностью и объемом очень велико. Если куб с длиной граней 1 см (объемом 1 см3) разбить на кубики с длиной граней 1 мкм, мы получим 1012 кубиков объемом по 1 мкм3 каждый. Суммарная поверхность этих кубиков в 10000 раз больше, чем поверхность исходного куба. Объем 1 мкм3 характерен для средней бактериальной клетки.

Большое отношение поверхности к объему приводит к интенсивнейшему взаимодействию с внешней средой; с этим связан очень быстрый обмен веществами между средой и клеткой многих микроорганизмов.


Правило Рубнера (1893) гласит, что энергетический обмен животного в покое пропорционален не массе, а поверхности его тела. Если это правило, в соответствии с его смыслом, распространить на отдельные ткани и малые клетки, то следует ожидать, что уровни метаболической активности будут различаться на несколько порядков. Как видно из табл. 1.2, интенсивность метаболизма, измеренная по потреблению О2, действительно зависит от размеров тканей и клеток. Соответственно высоки и скорости прироста микроорганизмов. Тому, кто размышляет о проблемах обеспечения пищей растущего населения Земли, будет интересно узнать, что в организме одного быка весом 500 кг за 24 ч образуется примерно 0,5 кг белка; за это же время 500 кг дрожжей могут синтезировать более 50000 кг белка.

Пластичность метаболизма. У высших растений и животных изменения обмена веществ относительно жестко ограничены имеющимся на бором ферментов; в процессе индивидуального развития состав ферментов у них, конечно, меняется, однако при перемене условий внешней среды такие изменения весьма незначительны. Микроорганизмы отличаются несравнимо большей гибкостью. Для бактерий высокая способность к адаптации (приспособлению) совершенно необходима. Это определяется их малыми размерами. В клетке микрококка найдется место только для нескольких сотен тысяч белковых молекул. Поэтому не нужные в данное время ферменты не могут содержаться про запас. Не которые ферменты, служащие для переработки питательных веществ, синтезируются только тогда, когда соответствующее вещество появляется вблизи клетки. Такие индуцибельные ферменты могут составлять до 10% общего белка, содержащегося в клетке. Таким образом, клеточные регуляторные механизмы у микробов играют существенно большую роль и проявляются более отчетливо, чем у других живых существ.

Распространение микроорганизмов. Малые размеры имеют значение и для экологии. Многие растения и животные, ныне широко распространившиеся благодаря человеку, встречались раньше лишь на отдельных континентах. В отличие от этого бактерии (включая цианобактерий) вездесущи: их можно найти в арктических областях, в воде и в высоких слоях атмосферы. Видовой состав их во всех местообитаниях в широких пределах сходен с их видовым составом в почве. Благодаря своему малому весу микроорганизмы легко распространяются с воз душными потоками. В естественных условиях ни одно местообитание, ни один субстрат не нуждается в специальном заражении каким-либо микробом. Этим обстоятельством пользуются для получения накопительных культур. Как правило, достаточно одного грамма садовой почвы, чтобы найти вид бактерий, способный расти за счет любого природного вещества. Микроорганизмы существуют повсюду; среда определяет лишь то, какие формы будут в данном месте активно размножаться. Создавая в пробирке соответствующие селективные условия, можно из небольшого количества земли или ила, а в особых случаях и из других материалов получать накопительные культуры, а из них   и  чистые   культуры   большинства   известных   микроорганизмов.

Количественные работы и успехи генетических исследований. Методы, с помощью которых можно выращивать в лаборатории микроорганизмы, разработали О. Брефельд, Р. Кох и его школа в прошлом веке. Введение в практику прозрачных питательных сред, уплотненных желатиной или агаром, позволило изолировать отдельные клетки, следить за их ростом в колонии и получать чистые культуры. Разработка стандартных методов стерилизации и приготовления питательных сред при вела к быстрому развитию медицинской микробиологии. Хотя еще Кох описал количественные методы, их преимущества при работе с мик­роорганизмами были поняты только в последние 50 лет. Малые раз меры микроорганизмов позволяют получать в одной пробирке или чашке Петри и исследовать популяции, состоящие из 108-1010 от дельных клеток, и благодаря этому выявлять такие редкие события, как мутация или передача приобретенного признака, не нуждаясь в сложных вспомогательных средствах и довольствуясь малым пространством. Огромные успехи биохимических и генетических исследований не в последнюю очередь достигнуты благодаря легкости обраще­ния с бактериями.

 

Категория: Микроорганизмы и окружающая среда | Добавил: Wiki (18.12.2009)
Просмотров: 10716 | Теги: микробные производства, генная инженерия, антибиотики
Copyright MyCorp © 2024 |